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For example, in 1D, concrete fails at fc, which has a value of a 
few tens of MPa. However, under hydrostatic loading, concrete 
fails much later. Even in biaxial loading, it fails at approximately 
σx=σy=1.2 fc, which can be observed in Figure 1.

In granular materials, the e� ect of load-path is present due 
to the evolution of microstructure during loading. Granular 
materials consist of particles that can transfer force to other 
particles through contacts between the particles. The response 
of these inter-particle contacts to external loading depends on 
the orientation of the contact. The response will change the 
mechanical properties of the contacts (increasing or decreasing 

the sti� ness). As a result, the material’s properties during loading 
will evolve in a generally anisotropic manner. Therefore, failure of 
a granular material cannot be de� ned by the state of stress but by 
studying the stress path. 

This project will focus on the load path-dependent failure of 
3D-printed concrete. The project is divided into two parts: a 
numerical part and an experimental part. In this article, only the 
numerical model and the theory behind it will be highlighted 
due to a lack of experimental results at this moment.  

The numerical model is based on Granular Micromechanics 
Approach (GMA). In GMA, the material is modeled as a collection 
of grains that interact with their neighbors. Within GMA, inter-
particle contacts in di� erent directions are studied separately, 
and the e� ect of the loading on the properties is incorporated 
in the model. Finally, the energy stored in all contacts (through 
the deformation of contacts and the force that is caused by 
the deformation) is set equal to the macroscopic energy of the 
material.  

Two neighboring particles have been illustrated in Figure 2. The 
normal and tangential directions and force vectors are displayed 
in Figure 2A and 2B, respectively. By de� ning constitutive 
equations for the normal and tangential direction, see Figure 3, 
it is possible to derive the sti� ness of the contacts in the normal 
and tangential direction. The graphs in Figure 3A and 3C are for 
tension and shear and the graph in Figure 3B is for compression.  

 A material system at failure is often characterized by its inability to sustain higher stresses (i.e. σij =0). Consequently, the 

failure criterion can be de� ned as a singularity of the sti� ness tensor. In practice, however, the failure criteria are most 

often described as functions of the stress tensor acting on the material, which can be described as  Fσij =0,where F is a 

general function. However, in many cases, the material’s behavior depends on the load-path and not only on the state of 

stress. In other words, the history of loading in di� erent directions will a� ect the behavior of the material.

 Load path dependent failure of 3D printed concrete
 Master's Thesis 

 By: Jorn Neelen
 Supervisor: dr. P. (Payam) Poorsolhjouy, dr.ir. R.J.M. (Rob) Wolfs, prof.dr.ir. A.S.J. (Akke) Suiker

Where Cijkl is the fourth order sti� ness tensor, ni, nj and nl are 
normal vectors (for the contact between two grains), l is the 
distance between the centroids of two neighboring grains, Kik 

is the sti� ness tensor in RVE coordinates of a certain contact, Np 

is the number density of grain-pair interactions (total number of 
contacts divided by the volume V of the RVE), ξ  is the intergranular 
contact directional density distribution function, and θ and φ are 
the two angles from the polar coordinate system. 

In this research, we utilize GMA to model a stress-controlled 
experiment to study the failure behavior of 3D printed concrete 
structures. The stress is applied in two steps: con� nement 
and deviatoric loading. The stress will be uniaxial or biaxial to 
match the possibilities of the experimental research. Both the 
con� nement stress and deviatoric loading stress are applied in 
small increments. By using the Euler method, the sti� ness tensor 
can be calculated by using the strain of the previous increment. 
When the sti� ness tensor is found, the strain can be updated, and 
a new load increment can be applied to the system.  

The e� ect of load-path will be studied in the biaxial plane by 
varying the level of con� nement. Figure 5 shows three di� erent 
con� nement levels: no con� nement, 0,4 times, and 0,8 times the 
uniaxial compressive strength. From these points, the deviatoric 
load will be applied in all directions with di� erent ratios between 
s22 and s33. The results show a clear di� erence between the 
obtained failure envelopes and illustrate the e� ect of load-path.

The experimental research is not yet executed and is still in 
the starting phase. It is expected that within 3 months the 
� rst results are obtained.◄

The properties of grain-pair interaction depend on the loading 
history that they experience. These properties are also a� ected 
by whether the material is experiencing loading, unloading, 
or reloading. In this model, we assume that upon unloading, 
the force-displacement relationship will go through a linear 
load path back to the origin (as seen in Figure 4). Unloading 
and reloading are fully elastic in the current model (in the 
future, this might be changed). Therefore, unloading can be 
described according to Figure 4. Where δT

n,max, δ
C

n,max, and δw,max 
are the maximum tensile, compressive and shear displacement 
that have occurred during loading, respectively. In Figure 4, the 
unloading-reloading curve is drawn for a random value of 
δT

n,max and δC
n,max. As long as the displacement does not become 

bigger than δT
n,max  or δC

n,max, the red curves in Figure 4 describe 
the relation between fn and δn. When the displacement 
becomes bigger than δT

n,max or δC
n,max, the blue curves in Figure 4 

describe the relation between fn and δn. 

The normal and tangential sti� ness found for every contact 
can be used to derive the sti� ness tensor for the representative 
volume element, RVE. Equation 1 shows a summation of all the 
microscopic sti� ness components, divided by the volume 
of the RVE. This, however, assumes that the location and all 
sti� ness components of the inter-particle contacts are known. 
The summation can be replaced by an integration, Equation 2, 
over the RVE when the assembly is su�  ciently large and contains 
enough grains. The integration does not require the exact 
location and sti� ness components of all the inter-particle 
contacts.
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      (2)Figure 1:  Biaxial failure envelope for concrete (Bazant et al, 1996). 

Figure 2:  Two neighboring particles. (A) Normal and tangential directions of 

the contact. (B) Normal and tangential force vectors of the contact.
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Figure 4:  Unloading-reloading trajectories for a random value of (A) δT
n,max 

(tension) and (B) δC
n,max (compression).

Figure 3:  Constitutive equations for (A) tensile stresses and strains, (B) 

compressive stresses and strains and (C) shear stresses and strains.

Figure 5:  Three di� erent levels of con� nement (A) and Failure envelopes for 

di� erent levels of con� nement (B).
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